The mist of an Appalachian morning reluctantly yielded to the sun as the day the hostler pulled himself aboard the big engine and nodded when the ground man waved him ahead onto the turntable. Amid the hiss of releasing air, the hostler slowly opened the throttle. The girders shuddered as the 42-inch drivers found the gap.

Stepping into the shanty at the end of the table, the ground man took a notch on the controller and spun the 200-ton locomotive. When the track was lined and locked, he gave the hostler the subtle, but unmistakable, hand signal to head into the roundhouse. This time, it was track 7.

From the moment the wheels stopped, the locomotive belonged to the shop crafts. It might be a wash job, inspections, or minor repairs — crews did a lot in this roundhouse. When they were done, someone would call for a hostler to spot it on the outbound ready track. Railroading had worked this way for a long time.

GATHER 'ROUND THE STORY

This wasn’t 1899, 1929, or even 1969. It was spring 2009, and the big engine was a 6-month old General Electric Evolution Series ES44AH. Baltimore & Ohio built the roundhouse almost a century ago for Mikados and lengthened it for Mallets. Now it handles state-of-the-art power for CSX at its Cumberland, Md., locomotive shop. The sophisticated work going on inside would astonish even the most visionary old-time roundhouse foreman.

Yet the comfortable familiarity of locomotive work in a traditional roundhouse is deceptive. At one time there were more than 3,000 roundhouses throughout North America. Today fewer than 200 remain, with a third of those still in railroad use. Only a dozen or so still service locomotives on Class I and major regional railroads.

Of the roughly 200 roundhouses spread about Texas’ 16,000 miles of railroad, parts of only four remain. Only two stalls of the Santa Fe house at Amarillo remain in railroad use. Others could be out there, but data is difficult to find, and the total is depressingly small.

Canada has no roundhouses east of Montreal. In the U.S., nearly three-quarters of the states have fewer than five roundhouses, and only four states report more than 10 still standing (in the 1920s most big cities had that many). A dozen states and the District of Columbia have none at all. Aside from a few almost-random survivors, the American roundhouse is largely extinct. And we barely noticed its passing.

by John P. Hankey
At the peak of the American railroad network, more than 1,000 large and small railroads serviced 100,000 locomotives every day. Roundhouses were ubiquitous, essential, and often surprisingly alike. No matter what configuration, the roundhouse had one overarching function: to receive a high-maintenance, complex, hard-run machine at the end of one operating cycle, and make it ready for another trip.

The “classic” roundhouse was the centerpiece of a system of locomotive operation and maintenance made possible by one critical invention: the turntable.

There were roundhouses without tables, and tables without roundhouses. But a circular building with radial tracks was an effective way to maximize the number of locomotives under cover. And each track was accessible independent of anything parked anywhere else.

The building didn’t have to be round, of course. In Great Britain it was common to place a turntable and tracks inside a square or rectangular building. Some “squarehouses” had as many as three or four turntables. The National Railway Museum in York offers a stunning example of that variation.

Roundhouses (or more generally, locomotive terminals) enabled railroads to centralize skilled labor and machinery, and efficiently handle routine tasks such as cleaning, fueling, and maintenance. That laid the foundation for the 100-mile division, relay-style dispatching and operating practices that defined American railroading throughout most of the 20th century.

Railroads located roundhouses where they were needed for operating reasons, and expected civilization to follow. Across the continent, hundreds of places owe their origins or prosperity to locomotive terminals. Cheyenne, Wyo., was an invention of the Union Pacific and today hosts one of UP’s few surviving roundhouses.

Chicago became America’s Second City (with dozens of roundhouses) by exploiting advantages as a railroad nexus and a place to change from one transportation form to another. The little railroad town of Terminus in the Georgia Piedmont (with two massive Antebellum roundhouses) was another example. We know it as Atlanta.

Often, the locomotive terminal represented the sudden projection of technology deep into the wilderness. As railroads expanded across frontiers, their shops might be the only places within hundreds of miles with metalworking skills, utilities, communication links, and other relatively sophisticated capabilities. After its founding by the Great Northern in the 1880s, Havre, Mont., was the most technologically advanced...
place in a wild part of the continent.

No matter what its architectural pretensions, a roundhouse was a quintessentially utilitarian building. They could be massive structures with 50 stalls and a three-trick workforce. Or they could be a few stalls off in the hills or out on the Plains, strategically located to handle mine run power or branchline locals. Some were spacious, airy, and landscaped. Others were compact structures tucked into dense urban neighborhoods or industrial plants.

Small or secondary roundhouses might function more as inspection stations and garages. But houses at division points, busy yards and junctions, and locations where traffic intensity warranted almost always had a coal wharf (or tower, dock, or trestle), water tank, sand house, ash handling equipment, oil house, and office.

More important houses had a machine shop, storehouse, power plant, wash rooms, and often rest houses or dormitories for the train crews.

Operating officials regarded the roundhouse as a reliable control point. Before computer networks, power bureaus, and modern communication systems, knowing where a given locomotive or crew was at any particular moment often was sheer speculation. Roundhouses were like pigeon coops. Sooner or later, every engine and crew had to return home to be counted, inspected, serviced, and kept track of.

FROM STEAM TO DIESEL

Roundhouses were not exclusively steam-era structures. With a few modifications, they worked well for first-generation diesels. Some of the last “traditional” houses built in the post-World War II years, like B&O’s roundhouse at Fairmont, W.Va., or the Pennsylvania Railroad’s Conway facility outside Pittsburgh, were really diesel shops. Railroads modernized hundreds of older houses with inspection racks, servicing equipment, and tooling for diesel work. A roundhouse drop table could handle a traction motor as well as a driving wheel.

Some of the most noteworthy roundhouses were for car building and repair. For many years, the immense brick Freight Car Shop in the heart of Pennsy’s Altoona Car Shops (ca. 1871) was the largest roundhouse in the world at 433 feet in diameter. In 1884, the B&O built its iconic Passenger Car Roundhouse at Mt. Clare in Baltimore exclusively for passenger car construction. It is now the heart of the B&O Railroad Museum.

Because of their inherent versatility, roundhouses often went through phases of use. Most of the roundhouses in railroad use today service no locomotives. They are warehouses, repair shops, or other utility space. That is not a recent phenomenon. When the PRR realigned its carbuilding operations in Altoona in the 1920s, the massive car roundhouse became a locomotive finishing shop.

One of the earliest roundhouses in the world, the 1846 Robert Stephenson-built London & North Western house at Camden Town, near London, served only a decade before locomotives outgrew it. Off and on for the last four decades it has been a performance space and represents one of Europe’s most unusual entertainment venues.

Where was the “first” roundhouse? Which was the “biggest?” What was “average?” Just how many were there?

No one has yet done the fine-grain history to establish those facts with reasonable
certainty, which suggests how little attention we've paid to roundhouses. Railroads knew the details (they were, after all, large capital assets and expensive to operate), but the big picture is still murky.

For example, no less an authority than retired Smithsonian transportation curator John White describes the origins of the roundhouse as “uncertain.” But there are the usual suspects. Pioneering locomotive man David Matthew claimed in the 1880s that he built the first one on the Utica & Schenectady Railroad in 1836. The Midland Railway in England built one at Derby in 1839, and the B&O was putting them up by the early 1840s. The Midland’s house, part of a sprawling complex, recently was restored for use as meeting space.

Quickly, the roundhouse and the locomotive terminal evolved into the forms they would take until the end of steam. Even in the initial “roundhouse era” (from about 1840 to about 1870), companies were building roundhouses to standard plans, siring multiple roundhouses at busy terminals, and creating large houses of 40 stalls. The basics of the terminal had been worked out, and were quite sophisticated.

Some railroads favored enclosed turntables within circular or polygonal houses. By the late 1840s, others were building segmental houses with outside turntables. That design accommodated more stalls around a single turntable, and let the railroad build incrementally. Segmental houses could also be lengthened relatively easily — important as locomotives grew.

The stone roundhouse at Aurora, Ill., is an early example. Chicago, Burlington & Quincy built the first 22 stalls in 1856 and another eight three years later. In 1864 the Q completed the circle with a final 10 stalls, making it a classic “doughnut” house. Aurora is no longer a railroad town, but the roundhouse has been redeveloped into a brewpub and entertainment complex.

The second “era” predictably corresponds with the late-19th century railroad-building boom. As the network expanded to continental scale and near-maximum density, the roundhouse became a mass-produced commodity. There were architectural gems, but for the most part these houses were solid, utilitarian, and adequate for Ten-Wheelers and Consolidations.

The multiple revolutions in railroad technology between the 1890s and World War I likewise revolutionized the roundhouse. The industry was physically re-inventing itself in much the way it has over the past two decades. Improvements like air brakes, steel cars, and automatic signals had cascading and mutually reinforcing effects. The trend to ever-larger and more complex locomotives obviously required larger and more sophisticated locomotive terminals.

Conventional 2-6-0s and 2-8-0s rapidly grew to become modern Pacifics and Mikados. Road engines evolved to about 75 feet long, and railroads erected hundreds of roundhouses in the first quarter of the 20th century for locomotives of that size. But the introduction of Mallets (1904) and power with long rigid wheelbases (on the Pennsy and Union Pacific) soon changed standards.

By 1910, a “big engine” could be 100-feet long or longer. Sometimes, the size of a railroad’s existing roundhouses could dictate the size of its locomotives. Other times, newer, bigger locomotives required larger roundhouses. It was always a fluid and complex situation. Change came so fast that for decades, replacing tables and enlarging roundhouses were staples of bridge and building departments.
The big houses of this “third era” reflected those geometric realities. By lengthening the distance between the turntable ring and the house, a railroad could squeeze more stalls into a slightly larger footprint and leave room for expansion. That trend reached its logical conclusion at Oneonta, N.Y., in 1906, where the Delaware & Hudson completed what it claimed was “the largest roundhouse in the world.”

The Oneonta house was substantial. Around a 75-foot turntable, D&H built 52 stalls with three access tracks in a full circle. The outer diameter was a little over 400 feet, and enough room was inside the circle to lengthen the turntable to 105 feet as locomotives grew. The original stalls were 80 feet deep, but D&H soon began lengthening them. At its largest, the Oneonta house had 17 stalls enlarged to 131 feet, long enough for the D&H's biggest articulateds.

The Pennsy's 1904 locomotive roundhouse at East Altoona was a close second at 395 feet in diameter, and its details hint at the scale attained by turn-of-the-century railroad ing. The Altoona house had 50 tracks (52 if you count the access tracks), a 75-foot turntable (later replaced with a 100-foot span), and four drop tables. The two locomotive storage yards (for the Pittsburgh and Middle Divisions) held 150 locomotives. On an average day, the 700 employees in a dozen different crafts serviced 370 locomotives.

From the 1920s through the late 1940s (with time out for the Great Depression), there was a final spurt of building as railroads throughout the country added space and built roundhouses to accommodate locomotives, which by then had attained their largest practical dimensions. The 1924 concrete house Southern Railway built at Spencer Shops is typical of many, with concrete construction and a 100-foot table. It is the centerpiece of the North Carolina Transportation Museum and, at 37 stalls, the largest remaining house in North America.

A casual observer might find roundhouses to be spacious places. An empty roundhouse can seem positively cavernous, especially if it was designed for big locomotives. At somewhere between 2,300 and 2,500 square feet per stall (twice as large as the average house in the 1940s), a typical 20-track roundhouse could total 50,000 to 60,000 square feet under roof, not including unattached buildings like machine shops.

There once was a roundhouse in almost every corner of the nation, but no more. Steam railroading’s signature building has all but disappeared from the landscape, but what is left is remarkable. You’ll find preservation jewels from coast to coast, such as the rebuilt 1892 roundhouse at William, Conn., and the Sierra Railroad’s Jamestown, Calif., roundhouse. You’ll find modern diesels still calling for repairs and maintenance at Norfolk Southern’s Knoxville, Tenn., roundhouse as well as the Wisconsin & Southern’s Janesville, Wis., roundhouse. And you’ll find some that will surprise you: like the Chicago, Burlington & Quincy roundhouse in Aurora, Ill., that’s a restaurant (page 55), and the former owner of the Ohio Central Railroad System’s own private roundhouse that’s under construction (page 54). You can find these and others in a list of the existing roundhouses at www.TrainsMag.com.

You’ll be surprised by what’s left out there

Precious Space

But by the 1920s, even ordinary locomotives could be large. And roundhouses were the sites of different, and sometimes conflicting, tasks. They were often a few sizes too small and seemingly designed for the last generation of locomotives. Or the company had moved maintenance work closer to the engines, or the people who made decisions simply didn’t anticipate the realities of a 24/7 operating environment. In any case, it was rare to find a roundhouse where space wasn’t constantly an issue.

In a typical 80-foot-deep stall, a Mikado spotted inside commandingly occupied about a third of the available area. Everyone — laborers, machinists, inspectors — needed room around the locomotive to do their work. Columns, walkways, utilities, and features like access to the pits soaked up a surprising amount of space.

Then there were personal workspaces. These could be anything from specialized workstations to ad-hoc facilities “squatting” in the roundhouse for the convenience of the work. There were tool lockers, supply bins, hose dollies, welding and burning outfits, grinders, journal bearing carts, oil trucks, and other heavy, bulky, necessary equipment. Rather quickly, the cavernous roundhouse could get crowded as a half-dozen different crafts jockeyed for access.

That goes to one of those largely unremarked but important aspects of the traditional roundhouse: Men (and, only rarely, women) from different railroad labor organizations had to work closely together under various union work rules, area customs, and the quirks of local management. A good roundhouse was like a large family. There might be “personal dynamics,” but generally everybody got along and accepted the small compromises that made the work a little easier. A roundhouse where folks didn’t get along just made the work harder, and the space seem even smaller.
Above all, roundhouses were service points and “turning an engine” was always their main role. Steam and early diesel locomotives required a great deal of attention before and after each run. The average varied according to types of engine and kinds of service, but a steam locomotive might spend an hour at the terminal and in the backshop for every four it spent on the road or in the yard.

When a locomotive stopped on the fire track, the roundhouse crew got to work. Every house was different, but the basic steps were the same. When the incoming crew spotted its power and signed off, it was obliged to report any defects or problems. A hostler would move the locomotive to the ash pit or “cinder track,” where laborers would shake the grates and empty the ash pan into a pit. The leftovers of a hard-worked steam locomotive were hot, toxic, and nothing to treat lightly.

The men would water and fuel the tenders and top off the sandboxes. At modern facilities, these tasks were coordinated and mechanized. At more modest facilities, that work could be backbreaking and primitive. The objective was simply to replenish the consumables and get the machine poised to go back out.

At the inspection pit, machinists changed brake shoes, checked wheels and bearings, looked for defects, and identified maintenance issues. The details were different in diesel days, but the point was the same. If engines were earning their keep, they were stressed on every run. Before they went out again, they needed to be inspected and repaired. What a roundhouse inspector missed could kill a road crew.

A good roundhouse crew, like a good locomotive engineer, was mildly obsessive about lubrication. Overlooking a driver grease cellar or tender journal box could cripple a locomotive. A dry, overheating crank pin could shear off and send a side rod flailing into the locomotive cab or into the ballast, where it could derail a train. Locomotive terminals consumed many kinds of oils and greases, which is why it is rare to find a roundhouse without an oil house.

The corollary was that roundhouse crews spent a fair amount of time using steam and hot water to clean road grime and old lubrication from locomotive machinery. Wiping boiler jackets with oil-soaked cotton waste, cleaning soot from headlights and cab windows, applying front-end paint (usually graphite-based) were some of the lowliest kinds of roundhouse work. But there was really no other way to make a locomotive presentable.

On a good day, if the inbound crew hadn’t reported major problems and inspectors found nothing major, a roundhouse crew could turn a locomotive in a few hours. Each operation took only a few minutes. But there were many tasks to complete. In the worst cases, the workers hustled to turn an engine while the outbound crew, and maybe a trainmaster or road foreman, stood by questioning their competence, motivation, and parentage.

Most roundhouses were primary maintenance facilities. Major rebuilding and periodic “Class” repairs generally happened in a backshop or centralized facility. But most railroads relied on roundhouse crews to handle a variety of heavy and light repairs, upgrades, and intensive maintenance.

A well-equipped roundhouse with a skilled crew could practically build a locomotive. There wasn’t much that a good roundhouse couldn’t do, and that was part of the plan. With a relative handful of specialized machine tools — presses, lathes, milling machine, and a few others — local machinists could renew journals, replace pistons, make new rods, and at least patch up a surprising range of defects.

In the house itself, boilermakers and blacksmiths could replace tubes and flues, weld cracks, repair wreck damage, change staybolts, and avoid sending a locomotive hundreds of miles away for an unscheduled (and sometimes lengthy) visit to the backshop. Most large roundhouses had drop pits, which enabled crews to change wheels on site. Pipefitters were always indispensable and usually busy.

Roundhouse crews devoted an immense amount of time and trouble to the required monthly boiler wash. Impurities in the water could coat the inside of a locomotive boiler with a thickening layer of hard scale or mud. Water treatment helped, but the real solution was to unscrew the washout plugs at strategic boiler locations and blast the mud out with high-pressure water.

That was a miserable task. And it meant dropping the fire, draining the boiler, and then firing the locomotive up again once
the wash was done. It wasted a lot of heat, and many roundhouses had elaborate reservoirs and systems for capturing and reusing hot boiler water. Others simply let it run into the pit and drain toward the nearest river or stream.

Some people have described the interior of a roundhouse as a living Hell — the steam and water from washing boilers mixing with the smoke from fires being kindled or banked and all manner of loud, dirty, hard work going on. Oil stench, welding sparks, and the whine of air tools would have enhanced the atmosphere. Yet how many of us today would pass up the chance to revisit that Hell, just for a little while?

ROUNDHOUSE WORKERS

There is another important aspect of the railroad roundhouse few people consider: the people.

Maybe some day an enterprising researcher will sift through the data and come up with an accurate figure. But for the time being, I’ll offer a rough estimate: Throughout most of the 20th century, at least a third and maybe half of American railroaders began or ended their workdays at a roundhouse or locomotive terminal.

Sure, there were the general office building staffs, and the major backshop crews, and the clerks, maintenance-of-way forces, and train service employees who reported for work at places up and down the railroad. Transportation is decentralized by its nature, and railroading always had a particularly dispersed workforce.

But for the better part of a century, most railroaders in the running trades and most of the locomotive shop crafts (boilermakers, laborers, blacksmiths, pipefitters, machinists) reported for work at a roundhouse. They shared space with clerical and communication forces, management, and support staff.

A big roundhouse on a major railroad might have between one and 300 men and women on the property for each eight-hour “trick.” Depending on how many trains originated, terminated, or changed crews, there might be another hundred or two train and engine employees passing through every 24 hours. In railroading’s glory days, a middle-sized Class I carrier might have had 7,000 employees pause at its roundhouses every day, with twice or three times that number on big railroads.

The roundhouse was also where almost every aspect of everyday railroading rubbed together with varying degrees of friction. I cannot think of any other place that brought together so many different crafts, functions, agendas, territories, and departments as the traditional, big-time, roundhouse/locomotive terminal. It was the main interface between the operating department, which needed locomotives for...
its crews to run, and the mechanical department, which was expected to have those machines ready.

The roundhouse foreman had to work closely with the train dispatcher, road foreman of engines, trainmaster, yardmaster, and anyone else of rank who had an opinion about the locomotives assigned to that particular roundhouse. He also had to pay attention to the mechanical department (of which he was nominally a part) and work with the local chairmen of whatever railroad labor organizations were represented on the property.

Roundhouse work could be hard, dangerous, and dirty. Most roundhouses, the busy ones, at least, operated 24/7/365. It didn’t matter what the weather was, how you were feeling, or even what seemed reasonable at the moment. The roundhouse offered a continuously unfolding series of tasks and challenges, leavened by the kinds of relationships and security that came with traditional railroading.

Lubrication was an important and often obsessive ritual for roundhouse workers. A laborer walks along the running gear and applies lube to grease fittings. Robert Hale

A New York Central worker in the Niles, Mich., roundhouse attaches “house air” to help a locomotive steam. Charles L. Fernes

A boilermaker, for example, never knew what the next locomotive on the fire track might hold in store. He might spend most of his time changing staybolts on cold locomotives or helping with monthly inspections and boiler washes. But when a locomotive limped in on his trick with a half-dozen leaking tubes, he was the one who had to put on the asbestos suit, lay the oak planks over the grates, and climb into the hot firebox (fire knocked but still 400 degrees inside) to re-roll the tubes.

On the other hand, roundhouse jobs generally were good railroad jobs. Railroaders handed them down through the family and used them to get a foothold in the rapidly changing American economy. Hundreds of communities built their economies on the wages brought home by roundhouse workers.

At a time when the railroad industry was one of America’s largest employers, getting hired on at the local roundhouse could be a real start to a better life. Millions of North Americans have worked at or around roundhouses, and we have little real sense of what it was like or what it ultimately meant.

THE ALPHA AND THE OMEGA

Two surviving roundhouses nicely bookend the rich, but as-yet unexplored, story of the American roundhouse.

In 1849, a young man named Albert Fink immigrated to the United States from Hesse, in what later became Germany. He was a gifted mathematician with an engineering degree who had gotten into some trouble with the Prussian authorities (those were revolutionary years in Europe) and had to make a hasty exit.

He sought out Benjamin Henry Latrobe II, the B&O’s chief engineer who was then orchestrating the final push that would take the main line over the Alleghenies to the Ohio River and beyond. Latrobe was impressed with Fink and quickly assigned him ever-increasing responsibilities.

One of Fink’s earliest projects was to design an enclosed roundhouse. His solution was elegant, efficient, and essentially European: a prefabricated cast-iron frame with a polygonal brick window wall and tall clerestory. A large louvered cupola vented the space. This was a sophisticated engineering solution for its time.

The parts could be mass-produced, loaded onto freight cars, and assembled quickly with a minimum of skilled labor and equipment anywhere the railroad needed a roundhouse. The finished structure was essentially fireproof and could be enlarged relatively easily. The B&O built at least six, and the Louisville & Nashville a couple more. Fink was 24 years old when his first roundhouse went up in 1851.

Buckminster Fuller was another remarkable man and proficient mathematician. Almost exactly a hundred years later, Fuller perfected his far more complex geodesic dome — a likewise prefabricated, lightweight, versatile structure that could be erected anywhere with ordinary labor.

Most accept the 1951 Nickel Plate Road roundhouse at Calumet Yard outside Chicago as the final traditional American roundhouse. But I suggest the “Roundhouse Era” in American railroad ing actually ended between 1958 and 1961 with the completion of two amazing structures: a pair of massive steel geodesic dome car shops for the Union Tank Car Co. They were the ultimate, if most unconventional, “round” houses.

The first, in Baton Rouge, La., was an impressive 384 feet in diameter and 125 feet high. While smaller than Pennsy’s Altoona Car Shop, there were no internal obstructions. It was the first industrial application of Fuller’s pathbreaking design and the largest geodesic dome ever built. Three tracks led to the interior turntable, which accessed 14 erection/repair bays.
Inside the main dome was a smaller dome for offices and support functions.

The second geodesic carshop was only slightly smaller at 354 feet in diameter. Union Tank Car built it three years after the first in Wood River, Ill., just across the Mississippi from St. Louis. Fuller himself helped supervise its erection. We might find bemusement, if not irony, in the fact that the last “traditional” railroad roundhouse in fact was a futuristic structure designed by someone with absolutely no ties to the industry.

Remarkably, splendid examples of both Fink’s and Fuller’s roundhouses still exist. At Martinsburg, W.Va., the Berkeley County Roundhouse Authority acquired the former B&O division point shop complex and restored the three main buildings close to their as-built 1866 condition.

Included was the sole surviving Fink roundhouse. After the Civil War, the B&O had dusted off the patterns and produced a new set of his 1851-design roundhouses to replace facilities destroyed in the war. Today, the “West House” (there were two) looks much as it did when first completed. It is easy to imagine 4-4-0s and ungainly 0-8-0 “Camels” rolling off the table inside.

At Wood River, the Fuller dome is now one of Watco Cos.’ major freight car repair and rebuilding shops. Three 80-foot tri-level auto racks would fit end-to-end inside with room to spare; the impressive arched ceiling soars overhead. The effect is unsettling at first. But this is nevertheless a busy carshop, with grit and steel and the controlled clutter of productive work all around. It is hard to believe that the dome is nearly a half-century old.

Each of these roundhouses is simultaneously ordinary and noteworthy. At the times of their design, each represented the leading edge of engineering and a railroad industry working very hard to innovate. Both have a great deal to teach us if we would take the time to learn from them.

For a century and a half, roundhouses were among the most recognizable and useful features of the American railroad landscape. In so many ways, they were the nexus of railroad technology, operations, communications, and work. If high drama unfolded on the main lines or in the boardrooms, it was the everyday work of the locomotive terminal that unfailingly revealed the true character of railroading.

We can only imagine how many people made a career or hobby of railroading because of their experiences at the local roundhouse. If we are diligent and creative, the few houses we have managed to preserve will offer the same excitement and opportunities to visitors in the future.

That is perhaps why roundhouses should be so important now. Only as they disappear have we begun to understand what they can tell us about railroading’s past. And how a railroad future largely without them is going to seem barren.

JOHN P. HANKEY is a historian and museum consultant living in Maryland. For a number of years, he worked in engine service for the Baltimore & Ohio Railroad at a variety of roundhouses.
Newest roundhouse in the land

Former Ohio Central owner and wife are building a classic 1920s-style brick roundhouse

On 34 acres of former eastern Ohio farmland near Sugarcreek, the 21st century’s most audacious, visionary, and significant privately funded railroad heritage project is taking shape: the recreation of a typical 1920s locomotive terminal. While many skilled people are participating, two individuals are making the Age of Steam Roundhouse possible: Jerry Joe Jacobson and his wife, Laura.

Last summer the two launched construction on an 18-stall, 43,000-square-foot brick roundhouse with a 115-foot turntable (from the Western Maryland at Hagerstown, Md.) and an attached backshop. Completion is set for late 2010. In a second phase, a storehouse, coal dock, water tank, and ash pit will be built to make this a functional steam and diesel terminal. In later phases, the Jacobsons hope to enlarge the roundhouse and construct a museum.

This will be the first large roundhouse built in the United States since 1951 (Nickel Plate Road at Calumet, Ill.), and it also represents one of the largest single private investments in railroad heritage. The cost of the project was not disclosed.

Initially, the complex will house the Jacobsons’ steam and diesel locomotives, passenger and freight cars, and collection of museum-quality artifacts. Eventually, the site will open as a museum. The Jacobsons have created and endowed a not-for-profit foundation to ensure its future.

They can do so because in 2008, they sold their Ohio Central Railroad System to shortline conglomerate Genesee & Wyoming. Jerry Joe Jacobson had been a nurse anesthetist, steam enthusiast, and keen observer of railroading. In 1988, he purchased a stretch of former Nickel Plate Road in eastern Ohio. In steady succession, he created a 500-plus-mile empire of 10 separate short lines with excellent service, an enviable operating ratio, and a stable traffic base.

When he sold the railroad, Jacobson kept his 10 steam locomotives, 22 diesels, 12 heavyweight and 12 lightweight passenger cars, as well as the depot at nearby Sugarcreek. Among the prizes in the steam collection are locomotives that have run under the Ohio Central banner in recent years: Grand Trunk Western 4-8-4 No. 6325, Canadian Pacific 4-6-2 No. 1293, and Lake Superior & Ishpeming 2-8-0 No. 33. In 2007, Jacobson purchased former Nickel Plate Road 2-8-4 No. 763 with plans to restore the Berkshire to operating condition.

This is classic American philanthropy in the style of great art museums. The new facility addresses two of the most critical missions facing railroad heritage: exposing new generations to the thrill of classic steam railroading, and teaching the traditional skills needed to maintain the equipment.

Steam excursions aren’t part of the plans for the new complex, but steam operations on freight trains as well as on nearby tourist lines, such as Byesville Scenic and Cuyahoga Valley Scenic railroads in Ohio, are still part of the plans for Jacobson’s engines. For updates, see the Age Of Steam Roundhouse Web site at www.ageofsteamroundhouse.com.
Gone are the days when you could wander into a roundhouse: They’re either torn down or off limits. But one historically significant house is open and offering good food and beer brewed inside its walls.

That place is Walter Payton’s Roundhouse in Aurora, Ill., near Chicago. The limestone building dates to 1856, when the newly-amalgamated Chicago, Burlington & Quincy constructed the original 22-stall, half-circle to maintain its fleet of 58 locomotives. Later additions of eight and 10 stalls expanded the roundhouse into a full circle by 1866. At its peak, the shop kept about 2,000 workers busy building and maintaining steam locomotives and fabricating specialty items like turntables.

Over time, larger and heavier motive power caused locomotive work to shift toward newer buildings, and activity at the Aurora Shops evolved as a result. A brick roundhouse was built south of the circular stone roundhouse in 1925, and the turntable inside the latter was removed in 1927. The stone house then became a forge, boiler, and cab shop.

Post-dieselization, Aurora maintained passenger cars and served as a warehouse until successor Burlington Northern closed the shop in 1974. BN razed the brick roundhouse and other shop buildings in the 1970s and wanted to tear down the stone roundhouse too. However, the city of Aurora, recognizing the pivotal role the building played in its history, intervened to save it. The roundhouse was listed on the National Register of Historic Places in 1978, but without maintenance it deteriorated.

About the same time, in 1975, the Chicago Bears drafted Walter Payton, a running back from Jackson State University in his native Mississippi. Payton rewrote the National Football League record book during his 13-year career with the Bears, retiring with 16,726 yards and 110 touchdowns. Afterwards, Payton went into auto and boat racing and investing in restaurants and entertainment venues.

Payton and three partners saw potential in the moldering Aurora roundhouse and purchased the property in 1995 — for $10. In 370 days the entrepreneurs stabilized the building’s exterior and opened America’s Brewpub, the restaurant and microbrewery that still serves steaks, chicken, seafood, and beer made in the roundhouse. By 1998 the group landscaped the former turntable pit into a courtyard and added conference rooms and entertainment venues.

In October 1999 the project won a National Preservation Award. Sadly, Payton died just a month later, but his legacy lives on in a stall of the roundhouse where memorabilia, including his Super Bowl ring, from his NFL career are displayed. Though railroad artifacts aren’t plentiful indoors, a restored CB&Q caboose sits outside, and you can ride frequent Metra service to the adjacent Aurora Transportation Center, the westernmost stop on the BNSF line.